

Fuel Cycle Research and Development

Fuel Development for Advanced Reactors

Jon Carmack
National Technical Director

June 8, 2016

2nd DOE-NRC Workshop on non-LWR Reactors Bethesda, MD

Contents

Nuclear Energy

- **GENIV Reactor Review**
- 2012/2014 Response to DOE Advanced Reactor RFI
- **Current SMR and Venture Capital Efforts**
- Summary of Current DOE Funded Advanced Fuel R&D

GENIV Reactor Systems

https://www.gen-4.org/gif/jcms/c_40465/generation-iv-systems

Nuclear Energy

GENIV – General Features

Nuclear Energy

(https://www.gen-4.org/gif/jcms/c_9353/systems)

System	Spectrum	Coolant	Outlet T (°C)	Fuel Cycle	Likely fuel system
VHTR (very-high- temperature reactor	Thermal	Helium	900-1000	Open	TRISO Pebble or Prismatic
SFR (sodium cooled fast reactor)	Fast	Sodium	500-550	Closed	Metallic/Oxide/ Nitride/Carbide
SCWR (super critical water reactor)	Thermal/fast	Water	510-625	Open/Closed	Oxide in high temp corrosion resistant steel
GFR (gas-cooled fast reactor)	Fast	Helium	850	Closed	Carbide in dispersion or pin SiC
LFR (lead-cooled fast reactor)	Fast	Lead	480-570	Closed	Metallic/Oxide/ Nitride/Carbide
MSR (molten salt reactor)	Thermal/Fast	Fluoride/chl oride salts	700-800	Closed	Liquid fuel or TRISO particle

(8)-Advanced Reactor Concepts submitted to DOE 2012 Request for Information

Advanced Reactor Concepts, Technical Review Panel Report. Evaluation and Identification of future R&D on eight Advanced Reactor Concepts, conducted April – Sept. 2012. December 2012.

- General Atomics Energy Multiplier Module, (EM2) [high temperature, gas-cooled fast reactor]
- Gen4 Energy Reactor Concept [lead-bismuth fast reactor]
- Westinghouse Electric Company Thorium-fueled Advanced Recycling Fast Reactor for Transuranics Minimization [thorium-fueled sodiumcooled fast reactor]
- Westinghouse Electric Company Thorium-fueled Reduced Moderation Boiling Water Reactor for Transuranics Minimization [thorium fueled BWR]
- Flibe Energy- Liquid Fluoride Thorium Reactor (LFTR) [thorium-fueled liquid salt reactor]
- Hybrid Power Technologies, LLC Hybrid Nuclear Advanced Reactor Concept [gas-cooled reactor / natural gas turbine combination]
- GE-Hitachi Nuclear Energy PRISM and Advanced Recycling Center [sodium fast reactor]
- Toshiba 4S Reactor [sodium fast reactor]

(7) - Advanced Reactor Concepts submitted to DOE 2014 Request for Information

Advanced Reactor Concepts, Technical Review Panel Report. Evaluation and Identification of future R&D on seven Advanced Reactor Concepts, conducted March – June 2014. October 2014.

- AREVA [prismatic, high temperature, gas cooled reactor]
- Hybrid Power Technologies, LLC Hybrid Nuclear Advanced Reactor Concept [gas cooled reactor coupled with natural gas turbine]
- Gen4 Energy Reactor Concept [lead-bismuth fast reactor]
- LakeChime SSTAR [lead-cooled fast reactor]
- General Atomics [high temperature, gas-cooled fast reactor]
- X-Energy [pebble-bed, high temperature, gas-cooled reactor]
- GE-Hitachi Nuclear Energy PRISM and Advanced Recycling Center [sodium fast reactor]

Introducing the Advanced Nuclear Industry

GENIV - FUEL DEVELOPMENT

DOE activity can be traced back to early 2000's. Experience on some concepts dates back to the early 1950's

■ NGNP: TRISO Fuel (VHTR/AGR), TRU-TRISO

■ SWR: Standard oxide (cladding corrosion is the issue)

■ MSR: Liquid fuel, solid core w/TRISO

■ GFR: Dispersion, pin

■ LFR: Nitride, metal, oxide, dispersion

■ SFR: Metal, oxide, nitride, dispersion

■ LWR/ALWR: ATF, TRU-MOX, IMF, UHB UO_{2.} Metallic

♠ No recent DOE work

♦ Work Curtailed under GNEP in 2008

DOE-NE advanced fuels research focuses on improved accident tolerance, high temperature operation, fuel cycle closure

High performance accident tolerant LWR fuels

- Accident tolerant
- Ceramic coated zircaloys
- Multi-layer ceramic claddings
- High density ceramics
- High thermal performance

Transmutation fast reactor fuels

Actinide bearing

- Metallic
- Ceramic
- Cermets

(U_{0.75},Pu_{0.20},Am_{0.03},Np_{0.02})O_{1.98} 20.8 at% fissile burnup (1.35E+21 fiss/cm³)

(U-29Pu-4Am-2Np-30Zr) 33.2 at% fissile burnup (3.91E+21 fiss/cm³)

High temperature gas reactor fuels

- TRISO based fuel
- High burnup high temperature operation (800° C) gas temperature
- Multi-layer fission production retention

U-Mo Monolithic Fuel

U-Mo Monolithic Base Fuel Design

- Single 'base' fuel type that meets requirements for 4 U.S. High Performance Research Reactors and 1 critical facility (ATR-C)
- Application to HFIR requires additional fabrication development

Fuel Cycle as a System: Towards a closed fuel cycle

Over the last 16 years, DOE advanced fuels campaign has gone through multiple changes in name and scope

DOE-NE Roadmap

Goal-oriented science based approach defined for fuel development

Base SFR/LFR Fuel Technology: US Experience

Crawford, Porter, Hayes, <u>Journal of Nuclear Materials</u>, **371**: 202-231 (2007).

	Metallic	Mixed Oxide	Mixed Carbide
Driver Fuel ≥ 120,000 U-Fs rods in 304LSS/316SS 1-8 at.% bu ~13,000 U-Zr rods in 316SS 10 at.% bu		>48,000 MOX rods in 316SS (Series I&II) 8 at.% bu;	None applicable
Through Qualification	U-Zr in 316SS, D9, HT9 ≥ 10at.% bu in EBR-II & FFTF	MOX in HT9 to 15-20 at.% bu (CDE) MOX in 316SS to 10 at.% bu	None applicable
Burnup Capability & Experiments	EBR-II & FFTF		18 EBR-II tests with 472 rods in 316SS cladding; 10 rods up to 20 at.% w/o breach 5 of which experienced 15% TOP at 12 at.% 219 rods in FFTF, incl 91 in D9, 91 with pellet & sphere-pac fuel
Safety & Coperability 6 RBCB tests U-Fs & U-Pu-Zr/U-Zr(5) 6 TREAT tests U-Fs in 316SS (9rods) & U-Zr/U-Pu-Zr in D9/HT9 (6 rods)		18 RBCB tests; 30 breached rods 4 slow ramp tests 9 TREAT tests MOX in 316SS (14 rods) & HT9 (5 rods)	10 TREAT tests (10 rods; Na or He bond); ≤ 3-6 times TOP margins to breach Loss-of-Na bond test; RBCB for 100 EFPD; Centerline melting test

Adv. Reactor Fuel Technology Development for Actinide Management

Focus Priority on Metallic Fuels

- Advanced fabrication techniques
- Characterization of material properties of minor actinide bearing fuels
- Irradiation behavior of actinide bearing fuel compositions
- Development of advanced claddings having high burnup capability

MSR Fuels: Liquid Flouride/Chloride Salt or TRISO fueled solid core

Reference: R.J.M. Konings ed. <u>Comprehensive Nuclear Materials</u>, Vol 5: <u>Material Performance and Corrosion/Waste Materials</u>. Elsevier. 2012. pp. 221-250.

Liquid salt fuel options are varied and can include U, Pu, and TRU

Table 2 Molar compositions, melting temperatures (°C),²⁷ and solubility of plutonium trifluoride (mol%) at 600 °C in different molten fluoride salts considered as candidates for the fuel and the coolant circuits in MSR concepts

Alkali-metal fluorides	ZrF₄-containing	BeF ₂ containing	ThF₄ containing	Fluoroborates	Solid fuel options
LiF-PuF ₃ (80-20) 743 °C ²⁸					typically based on TRISO technology
LiF-KF (50-50) 492°C	LiF–ZrF₄ (51–49) 509°C	LiF-BeF ₂ (73-27) 530°C	LiF–ThF₄ (78–22) 565°C	KF–KBF₄ (25–75) 460°C	TNISO lectificity
 LiF-RbF (44-56) 470°C LiF-NaF-KF (46.5-11.5-42) 454°C 19.3 ⁵ LiF-NaF-RbF (42-6-52) 435°C	- NaF-ZrF ₄ (59.5–40.5) 500 °C 1.8 ³¹ LiF-NaF-ZrF ₄ (42-29-29) 460 °C - LiF-NaF-ZrF ₄ (26-37-37) 436 °C	2.0 ³² LiF-NaF-BeF ₂ (15-58-27) 479 °C 2.0 ^{32,33} LiF-BeF ₂ (66-34) 458 °C 0.5 ^{32,33} LiF-BeF ₂ -ZrF ₄ (64.5-30.5-5) 428 °C	4.2 ²⁹ LiF-BeF ₂ -ThF ₄ (75-5-20) 560 °C 3.1 ²⁹ LiF-BeF ₂ -ThF ₄ (71-16-13) 499 °C 1.5 ³⁰ LiF-BeF ₂ -ThF ₄ (64-20-16) 460 °C 1.2 ²⁹	- RbF-RbBF ₄ (31-69) 442 °C - NaF-NaBF ₄ (8-92) 384 °C	UCO Kernel Inner PyC SiC Outer PyC
	NaF-RbF-ZrF ₄ (33-24-43) 420 ° C - NaF-KF-ZF ₄ (10-48-42) 385 ° C - KF-ZrF ₄ (58-42) 390 ° C		LiF-BeF ₂ -ThF ₄ (47-51.5-1.5) 360°C -	Prismatic HTGR	
Λd	vanced Fuels Campaign			HTGR	15

SCWR Fuels UO2 pellet in Corrosion Resistant Steel

Nuclear Energy

■ Fuel: UO2 (ThO2)

Cladding material

Inconel or Stainless steel

■ Coolant: Water

GFR Fuel Options Carbide in SiC pin or dispersion matrix

Rouault and Wei. <u>The GENIV Gas Cooled Fast Reactor: Status of Studies</u>. Presentation. Feb 2005.

GFR Fuel Requirements

■ High heavy metal density

- High coolant volume fraction in core
- Limit on Pu content
 - Non-proliferation (artificial)
 - Conversion ratio > 1

■ High temperature capability

- 900° -1200°C peak cladding temperature during normal operation
- 1600°C minimal fission product release
- 2000°C no core disruption

■Low parasitic absorption

- Rules out refractory metal-based cermets
- Amenable to recycle
- High burnup potential (?)

- Current target 5%

Thorium: DOE and the U.S. have experience and history but no recent experimental activity

Performance: ThO₂ is a robust material that has similar performance to UO₂ but Th is a breeding isotope with U-233 as the fissile component. Still need for initial supporting enrichment.

Proliferation Th-Based Fuels can significantly reduce total Pu production. HOWEVER, U-233 may be of proliferation concern and concepts with U-238 denaturing may be proposed.

Waste Th-Based Fuels are chemically more stable, and have higher radiation resistance than UOX → higher burnup potential; attractive option for once-through cycle (reduced production of transuranics can benefit repository performance; more durable and stable waste form, reduced waste per GWe, etc.)

Reactor/Fuel Systems Proposing Thorium:

Molten Salt
Lead Fast
BWR
Sodium Fast
GCFR
VHTR
LWR

Although the U.S. has a large Thorium resource the large infrastructure and supply of Uranium makes Thorium a low priority for DOE R&D.

Designing a sustainable system that takes full advantage of Thorium is challenging:

Generally requires driver/blanket
May require reduced power density
Pa-233 production complicates U-233
utilization in MSR.

Most GENIV fuels rank at TRL 4 or less at this time (Significant scale up needed for TRL 5 and 6 and transient testing needed for TRL 7

TRL F	unction	Definition		
1	cept	A new concept is proposed. Technical options for the concept are identified and relevant literature data reviewed. Criteria developed.		
2	Proof-of-Concept	Technical options are ranked. Performance range and fabrication process parametric ranges defined based on analyses.	LWR Accident Tolerant Fuels	
3	Proof	Concepts are verified through laboratory-scale experiments and characterization. Fabrication process verified using surrogates.		
4		Fabrication of samples using stockpile materials at bench-scale irradiation testing of small-samples (rodlets) in relevant environment. Design parameters and features established. Basic properties compiled.	Transmutation Fuel TRU-metal, TRU-oxide (roughly same TRL) Metal experience: mostly U.S.	
5	Proof-of-Principle	Fabrication of pins using prototypic feedstock materials at laboratory-scale. Pin-scale irradiation testing at relevant environment. Primary performance parameters with representative composistions under normal operating conditions quantified. Fuel behavior models developed for use in fuel performance code(s).	Oxide experience: mostly international (France and Japan)	
6	Proc	Fabrication of pins using prototypic feedstock materials at laboratory-scale and using prototypic fabrication processes. Pin-scale irradiation testing at relevant and prototypic environment (steady-state and transient testing). Predictive fuel performance code(s) and safety basis establishment.	Fast Reactor Metallic U-Pu-Zr • Not formally lincensed for a full core load • Not used in industrial-scale	
7	Proof-of-Performance	Fabrication of test assemblies using prototypic feedstock materials at engineering-scale and using prototypic fabrication processes. Assembly-scale irradiation testing in prototypic environment. Predictive fuel performance code(s) validated. Safety basis established for full-core operations.	Fast Reactor Metallic (U-Zr), Oxide (U,Pu) • Licensed for reactor operations • Successful mission operations	
8	of-of-Pe	Fabrication of a few core-loads of fuel and operation of a prototype reactor with such fuel.	Operational database wider for MOX, especially considering international experience	
9	Pro	Routine commercial-scale operations. Multiple reactors operating.	LWR UO ₂ -Zr Fuels	

Thank you

https://nuclearfuel.inl.gov